Respuesta :

Step 1:

Triangle PRS is similar QRS.

PR is similar to RQ

PS is similar to QS

Step 2:

PR = 14 - x

RQ = x

PS = 6

QS = 4

Step 3:

[tex]\begin{gathered} \frac{PR}{QR}\text{ = }\frac{PS}{QS} \\ \frac{14\text{ - x}}{x}\text{ = }\frac{6}{4} \\ \frac{14\text{ - x}}{x}\text{ = }\frac{3}{2} \\ 2(14\text{ - x) = 3x} \\ 28\text{ - 2x = 3x} \\ 28\text{ = 3x + 2x} \\ 28\text{ = 5x} \\ x\text{ = }\frac{28}{5} \\ x\text{ = 5.6} \end{gathered}[/tex]