Respuesta :

Given the following series:

[tex]-33,-27,-21,-15,....[/tex]

We will write the sigma notation for the given series

the given series is an arithmetic series becuase there is a common difference=6

we will find the explicit formula of the arithmetic series

[tex]a_n=a+d(n-1)[/tex]

Substitute a = -33, d = 6

[tex]a_n=-33+6(n-1)[/tex]

Simplify the expression:

[tex]\begin{gathered} a_n=-33+6n-6 \\ a_n=6n-39 \end{gathered}[/tex]

The sigma notation for the infinite series will be as follows:

[tex]\sum_{n\mathop{=}1}^{\infty}(6n-39)[/tex]

So, the answer will be:

[tex]\sum_{n\mathop{=}1}^{\infty}(6n-39)[/tex]