I need help with this practice I’m struggling to solve itIt asks *Verify the identity*(I will send you an additional photo with the answer options for the boxes)

I need help with this practice Im struggling to solve itIt asks Verify the identityI will send you an additional photo with the answer options for the boxes class=
I need help with this practice Im struggling to solve itIt asks Verify the identityI will send you an additional photo with the answer options for the boxes class=

Respuesta :

Answer:

[tex]\sin x(1+\tan ^2x)[/tex][tex]\sin x\sec ^2x[/tex][tex]\sin x\cdot\frac{1}{\cos^2x}[/tex][tex]\frac{\sin x}{\cos x}\cdot\frac{1}{\cos x}[/tex]

Explanation:

Given the below;

[tex]\sin x+\sin x\tan ^2x=\tan x\sec x[/tex]

We'll go ahead and manipulate the left-hand side of the equation following the below steps;

Step 1: Factor out sinx;

[tex]\sin x(1+\tan ^2x)=\tan x\sec x[/tex]

Step 2:

Recall the below trig identity;

[tex]\sec ^2x=1+\tan ^2x[/tex]

Substituting the above, we'll have;

[tex]\sin x\sec ^2x=\tan x\sec x[/tex]

Step 3:

Recall that;

[tex]\begin{gathered} \sec x=\frac{1}{\cos x} \\ \sec ^2x=\frac{1}{\cos ^2x} \end{gathered}[/tex]

So we'll have;

[tex]\sin x\cdot\frac{1}{\cos^2x}=\tan x\sec x[/tex]

Step 4:

We can further simplify as seen below;

[tex]\begin{gathered} \sin x\cdot\frac{1}{\cos x\cdot\cos x}=\tan x\sec x \\ \frac{\sin x}{\cos x}\cdot\frac{1}{\cos x}=\tan x\sec x \end{gathered}[/tex]

Step 5:

Recall that;

[tex]\begin{gathered} \tan x=\frac{\sin x}{\cos x} \\ \sec x=\frac{1}{\cos x} \end{gathered}[/tex]

So we can rewrite our equation as;

[tex]\tan x\sec x=\tan x\sec x[/tex]