An instrument maker creates a triangle in the shape of an isosceles triangle by bending a metal rod. The rod is 13 inches long, and the bottom of the triangle is longer than the two sides. What is the length of the longest side?

An instrument maker creates a triangle in the shape of an isosceles triangle by bending a metal rod The rod is 13 inches long and the bottom of the triangle is class=

Respuesta :

Given:

The rod length is 13 inches

The sides of a triangle are:

[tex]x,x-1,\text{ and }x-1[/tex]

Find-:

The sides of the triangles

Explanation-:

The rod length is 13 inches the mean perimeter is 13 inches.

So,

[tex]x+x-1+x-1=13[/tex]

The value of "x" is:

[tex]\begin{gathered} x+x-1+x-1=13 \\ \\ 3x-2=13 \end{gathered}[/tex][tex]\begin{gathered} 3x-2=13 \\ \\ 3x=13+2 \\ \\ 3x=15 \\ \\ x=\frac{15}{3} \\ \\ x=5\text{ inches} \end{gathered}[/tex]

The value of x is 5 inches.

The longest length is

[tex]\begin{gathered} \text{ Longest side }=x \\ \\ \text{ Longest side }=5 \end{gathered}[/tex]

The other two sides is:

[tex]\begin{gathered} \text{ Other two sides }=x-1 \\ \\ \text{ Other two sides }=5-1 \\ \\ \text{ Other two sides }=4 \end{gathered}[/tex]