An instrument maker creates a triangle in the shape of an isosceles triangle by bending a metal rod. The rod is 13 inches long, and the bottom of the triangle is longer than the two sides. What is the length of the longest side?

Given:
The rod length is 13 inches
The sides of a triangle are:
[tex]x,x-1,\text{ and }x-1[/tex]Find-:
The sides of the triangles
Explanation-:
The rod length is 13 inches the mean perimeter is 13 inches.
So,
[tex]x+x-1+x-1=13[/tex]The value of "x" is:
[tex]\begin{gathered} x+x-1+x-1=13 \\ \\ 3x-2=13 \end{gathered}[/tex][tex]\begin{gathered} 3x-2=13 \\ \\ 3x=13+2 \\ \\ 3x=15 \\ \\ x=\frac{15}{3} \\ \\ x=5\text{ inches} \end{gathered}[/tex]The value of x is 5 inches.
The longest length is
[tex]\begin{gathered} \text{ Longest side }=x \\ \\ \text{ Longest side }=5 \end{gathered}[/tex]The other two sides is:
[tex]\begin{gathered} \text{ Other two sides }=x-1 \\ \\ \text{ Other two sides }=5-1 \\ \\ \text{ Other two sides }=4 \end{gathered}[/tex]