Respuesta :

SOLUTION:

We are to find a polynomial of degree 3 with real coefficients that satisfies the given conditions. Zeros of -2, 1, 0 and P(2) = 40

[tex]\begin{gathered} x\text{ = -2} \\ x+2\text{ = 0} \end{gathered}[/tex][tex]\begin{gathered} x\text{ = 1} \\ x\text{ - 1 = 0} \end{gathered}[/tex][tex]x\text{ = 0}[/tex]

Let "a" be the coefficient be;

[tex]\begin{gathered} P\text{ (x) = a (x + 2) (x - }1)\text{ x} \\ P(x)=a(x^3+x^2\text{ - 2x)} \\ P(x)\text{ = }ax^3+ax^2\text{ - 2ax} \end{gathered}[/tex]

P (2) = 40

[tex]\begin{gathered} P(x)\text{ = a (x + 2) (x - }1)\text{ x} \\ P(2)\text{ = a (2 + 2) (2 -1) (2) = 40} \\ a\text{ (4)(1)(2) = 40} \\ 8a\text{ = 40} \\ \frac{8a}{8}=\frac{40}{8} \\ \\ a\text{ = 5} \end{gathered}[/tex]

[tex]\begin{gathered} \\ P(x)\text{ = 5}x^3+5x^2\text{ - 2(5)x} \\ P(x)\text{ = 5}x^3+5x^2\text{ - 10x} \end{gathered}[/tex]