Respuesta :

SOLUTION

This is a compound interest problem:

Step 1: List out the given parameters

[tex]\begin{gathered} \text{Amount (A) = unknown} \\ Principal(P)=500\text{ dollars} \\ \text{Rate (r) = 6.25 percent} \\ Time(t)=3\text{ years} \\ \text{Number of times compounded (n) = 365 days} \end{gathered}[/tex]

Step 2: Write out the compound interest formula:

[tex]A=P\lbrack1+\frac{r}{n100}\rbrack^{nt}[/tex]

Step 3: Substitute the given parameters into the compound interest formula:

[tex]\begin{gathered} A=P\lbrack1+\frac{r}{n100}\rbrack^{nt} \\ A=500\lbrack1+\frac{6.25}{365\times100}\rbrack^{365\times3} \end{gathered}[/tex]

Simplifying further:

[tex]\begin{gathered} A=500\lbrack1+\frac{6.25}{36500}\rbrack^{1095} \\ A=500\lbrack1+0.00017123\rbrack^{1095} \\ A=500\lbrack1.00017123\rbrack^{1095} \\ A=500\times1.2062071 \\ A=603.10355\text{ dollars} \\ A=603.10\text{ dollars (to the nearest cent)} \end{gathered}[/tex]

The answer is $603.10.