Many drivers' education books provide tables that relate a car's braking distance to the speed of the car. Utilize what you have learned about the stopping distance-velocity relationship tocomplete the table.

Many drivers education books provide tables that relate a cars braking distance to the speed of the car Utilize what you have learned about the stopping distanc class=

Respuesta :

To solve this problem we must apply Torricelli equation:

[tex]v^2=v^2_o+2\times\alpha\times d^{}_{}[/tex]

where:

v = final velocity

vo = initial velocity

α = acceleration

d = distance

Lets use the information of the first row of the table to find a:

[tex]\begin{gathered} v^2=v^2_o+2\times\alpha\times d^{}_{} \\ 0^2=60^2+2\times\alpha\times240 \\ 0=3,600+480\times\alpha \\ -480\times\alpha=3,600 \\ \alpha=\frac{3,600}{-480} \\ \alpha=-7.5ft/s^2 \end{gathered}[/tex]

Now we can calculate distances a, b and c:

[tex]\begin{gathered} v^2=v^2_{^{}o^{}}+2\times\alpha\times d \\ 0^2=40^2+2\times(-7.5)\times d \\ 0=1,600-15\times d \\ 15\times d=1,600 \\ d=\frac{1,600}{15} \\ d\approx107ft \end{gathered}[/tex]

So distance a = 107 ft.

Now we have:

[tex]\begin{gathered} v^2=v^2_o+2\times\alpha\times d \\ 0^2=30^2+2^{}\times(-7.5)\times d \\ 0=900-15\times d \\ 15\times d=900 \\ d=\frac{900}{15} \\ d=60ft \end{gathered}[/tex]

So distance b = 60 ft.

Finally:

[tex]\begin{gathered} v^2=v^2_o+2\times\alpha\times d \\ 0^2=10^2+2\times(-7.5)\times d \\ 0=100-15\times d \\ 15\times d=100 \\ d=\frac{100}{15} \\ d\approx7ft \end{gathered}[/tex]

So distance c = 7 ft.