Let's find the volume of each container
The volume of the container A is:
[tex]\begin{gathered} Va=\pi\cdot ra^2\cdot ha \\ where\colon \\ ra=6 \\ ha=16 \\ Va=\pi\cdot(6^2)\cdot16 \\ Va=576\pi ft^3 \end{gathered}[/tex]
The volume of the container B is:
[tex]\begin{gathered} Vb=\pi\cdot rb^2\cdot hb \\ where\colon \\ rb=7 \\ hb=14 \\ Vb=\pi\cdot(7^2)\cdot(14) \\ Vb=686\pi ft^3 \end{gathered}[/tex]
Let:
x = percent of container B that is full after the pumping is complete:
[tex]\begin{gathered} x\cdot Vb=Va \\ x=\frac{Va}{Vb} \\ x=\frac{576\pi}{686\pi} \\ x=0.836 \end{gathered}[/tex]
to the nearest tenth:
84.0%