i) In order to determine the absolute error, take into account that you have a set of measurement, that is, you calculate the mean absolute error.
Use the following formula:
[tex]\text{mae}=\frac{\sum ^n_{i\mathop=1}\lvert x_i-x\rvert}{n}[/tex]where xi are the different measures and x is the expected value. In this case
x = 3.92.
Replace the given data into the previous expression and simplify:
[tex]\begin{gathered} \text{mae}=\frac{1}{11}\lbrack\lvert3.65-3.92\rvert+\lvert4.11-3.92\rvert+\lvert3.59-3.92\rvert+\lvert7.51-3.92\rvert+ \\ \lvert3.95-3.92\rvert+\lvert3.87-3.92\rvert+\lvert4.06-3.92\rvert+\lvert1.48-3.92\rvert+\lvert3.60-3.92\rvert+ \\ \lvert3.76-3.92\rvert+\lvert3.99-3.92\rvert\rbrack \end{gathered}[/tex]After simplification you obtain:
[tex]\text{mae}=\frac{7.59}{11}=0.69[/tex]Hence, the mean absolute error is 0.96