Consider a sampling distribution with p=0.14 and samples of size n each. Using the appropriate formulas, find the mean and the standard deviation of the sampling distribution of the sample proportiona. For a random sample of size n = 4000b. For a random sample of size n = 1000c. For a random sample of size n=250.a. The mean is

Respuesta :

Given:

p = 0.15

The mean and standard deviation(S.D) can be calculated using the formula:

[tex]\begin{gathered} \operatorname{mean}\text{ = p} \\ S\mathrm{}D\text{ = }\sqrt[]{\frac{p(1-p)}{n}} \end{gathered}[/tex]

(a) A random sample of size n = 4000

mean = 0.14

SD:

[tex]\begin{gathered} =\text{ }\sqrt[]{\frac{0.14(1-0.14)}{4000}} \\ =\text{ }\sqrt[]{\frac{0.1204}{4000}} \\ \approx\text{ 0.005486} \end{gathered}[/tex]

SD = 0.005486

(b) A random sample of size n = 1000

mean = 0.14

SD:

[tex]\begin{gathered} =\text{ }\sqrt[]{\frac{0.14(1-0.14)}{1000}} \\ =\text{ }\sqrt[]{\frac{0.1204}{1000}} \\ \approx\text{ }0.01097 \end{gathered}[/tex]

SD = 0.01097

(C) A random sample of size n = 250

mean = 0.14

SD:

[tex]\begin{gathered} =\text{ }\sqrt[]{\frac{0.14(1-0.14)}{250}} \\ =\sqrt[]{\frac{0.1204}{250}} \\ \approx\text{ 0.02195} \end{gathered}[/tex]

SD = 0.02195