Answer:
[tex]\begin{gathered} 136+(0)i \\ a=136 \\ b=0 \end{gathered}[/tex]Explanation:
Given the complex number;
[tex]-6+10i[/tex]Its complex conjugate is;
[tex]-6-10i[/tex]The product of the two complex number is;
[tex]\begin{gathered} (-6+10i)(-6-10i)=-6(-6)-6(-10i)+10i(-6)+10i(-10i) \\ (-6+10i)(-6-10i)=+36+60i-60i-100i^2 \\ (-6+10i)(-6-10i)=+36-100(-1) \\ (-6+10i)(-6-10i)=+36+100 \\ (-6+10i)(-6-10i)=136 \end{gathered}[/tex]Writiing it in the form a + bi, we have;
[tex]\begin{gathered} 136+(0)i \\ a=136 \\ b=0 \end{gathered}[/tex]