A simple pendulum of length L has a period of T seconds. What should be the length for the period to be 3Tseconds?

Respuesta :

Given data:

Length of peldulum is,

[tex]l_1=L[/tex]

Period of pendulum is,

[tex]T_1=T[/tex]

New period of pendulum is,

[tex]T_2=3T[/tex]

Formula:

Formula of period of pedulum is as follows:

[tex]T=2\Pi\sqrt[]{\frac{l}{g}}[/tex]

For old period of pendulum above equation becomes as follows:

[tex]T=2\Pi\sqrt[]{\frac{L}{g}}[/tex]

Taking square of above equation,

[tex]\begin{gathered} T^2=4\Pi^2\frac{L}{g} \\ L=T^2g\frac{1}{4\Pi}\text{ ..}.(1) \end{gathered}[/tex]

Now, for new period of pendulum,

[tex]T_2=2\Pi\sqrt[]{\frac{L_2}{g}}[/tex]

Taking square of above equation,

[tex]T_2=3T^{}_{}_{}[/tex]

Hence,

[tex]\begin{gathered} (3T)^2=4\Pi^2\frac{L_2}{\text{g}}\ldots(2) \\ L_2=9T^2g\frac{1}{4\Pi}\ldots(3) \end{gathered}[/tex]

Taking ratio of equation-(3) and equation-(1),

[tex]\begin{gathered} \frac{L_2}{L}=9T^2g\frac{1}{4\Pi}\times\frac{1}{T^2g}4\Pi \\ \frac{L_2}{L}=9 \\ L_2=9L \end{gathered}[/tex]

Therefore, Length of pendulum should be 9L for the period to be 3T seconds.

Otras preguntas