Let a and b be the lengths of the legs of a right triangle

Answer:
[tex]c=3\sqrt[]{2}[/tex]Explanation:
We were given a right triangle having the following properties:
[tex]\begin{gathered} a=3 \\ b=3 \\ c=\text{?} \end{gathered}[/tex]We are to find the length of the unknown side using Pythagoras Theorem:
[tex]\begin{gathered} c^2=a^2+b^2 \\ c^2=3^2+3^2 \\ c^2=9+9 \\ c^2=18 \\ \text{Take the square root of both sides, we have:} \\ c=\sqrt[]{18} \\ c=\sqrt[]{9\times2} \\ c=\sqrt[]{9}\times\sqrt[]{2} \\ c=3\times\sqrt[]{2} \\ c=3\sqrt[]{2} \\ \\ \therefore c=3\sqrt[]{2} \end{gathered}[/tex]