Respuesta :

Half-life of a substance is found by the next equation:

[tex]N(t)\text{ = }N_0\cdot(\frac{1}{2})^{\frac{t}{t0.5}}[/tex]

where:

N(t) is the quantity of the substance remaining

N0 is the initial quantity of the substance

t is the time elapsed

t0.5 is the half-life

Replacing with t = 42, N(t) = 0.25 and N0 = 2, we get:

[tex]\begin{gathered} 0.\text{25 = 2}\cdot0.5^{\frac{42}{t0.5}} \\ \frac{0.25}{2}=0.5^{\frac{42}{t0.5}} \\ 0.125\text{ }=0.5^{\frac{42}{t0.5}} \\ \ln (0.125)\text{ = }\frac{42}{t0.5}\cdot\ln (0.5) \\ t_{0.5}=\frac{42\cdot\ln (0.5)}{\ln (0.125)} \\ t_{0.5}=\text{14 days} \\ \end{gathered}[/tex]