Respuesta :

Given:

The vector (-3,2) describes the translations:

[tex]\begin{gathered} A(-1,x)\rightarrow A^{\prime}(-4y,1) \\ B(2z-1,1)\rightarrow B^{\prime}(3,3) \end{gathered}[/tex]

From the first translation, we will find the values of (x) and (y)

So, we have the rule:

[tex](-1,x)+(-3,2)=(-4y,1)[/tex]

The sum of the x-coordinates from the left will equal the x-coordinates from the right

[tex]-1-3=-4y[/tex]

Solve the equation to find y

[tex]\begin{gathered} -4=-4y\rightarrow(\div-4) \\ y=1 \end{gathered}[/tex]

Now, The sum of the y-coordinates from the left will equal the y-coordinates from the right

[tex]x+2=1[/tex]

Subtract 2 from both sides:

[tex]x=-1[/tex]

From the second translation, we will find the value of z:

[tex]\begin{gathered} (2z-1,1)+(-3,2)=(3,3) \\ 2z-1-3=3 \\ 2z-4=3 \\ 2z=3+4 \\ 2z=7 \\ z=\frac{7}{2}=3.5 \end{gathered}[/tex]

so, the answer will be:

[tex]\begin{gathered} x=-1 \\ y=1 \\ z=3.5 \end{gathered}[/tex]

See the following figure:

Ver imagen AmyiaF707747