Consider a triangle where A = 30°. a = 1.8 cm, and b = 1.8 cm. Use the Law of Sines to find sin(B). Round your answer to 2 decimal places.

Consider a triangle where A 30 a 18 cm and b 18 cm Use the Law of Sines to find sinB Round your answer to 2 decimal places class=

Respuesta :

Recall that the law of sines states that:

[tex]\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\text{.}[/tex]

Therefore, for the given triangle we get that:

[tex]\frac{1.8}{\sin30^{\circ}}=\frac{1.8}{\sin B}.[/tex]

Solving the above equation for sinB we get:

[tex]\begin{gathered} \frac{\sin30^{\circ}}{1.8}=\frac{\sin B}{1.8}, \\ \sin 30^{\circ}=\sin B, \\ \sin B=\frac{1}{2}=0.5. \end{gathered}[/tex]

Answer: sin B=0.50.