Respuesta :

Given:

[tex]\mleft(x^3-5x^2\mright)+\mleft(2x-10\mright)[/tex]

You can find all its zeros, as follows:

1. Make the expression equal to zero:

[tex](x^3-5x^2)+(2x-10)=0[/tex]

2. Distribute the positive sign. Remember the Sign Rules for Multiplication:

[tex]\begin{gathered} +\cdot+=+ \\ -\cdot-=- \\ +\cdot-=- \\ -\cdot+=- \end{gathered}[/tex]

Then:

[tex]x^3-5x^2+2x-10=0[/tex]

3. Factor the expression:

- Make two groups using parentheses:

[tex](x^3-5x^2)+(2x-10)=0[/tex]

- Identify the Greatest Common Factor of each group. For the first group:

[tex]GCF=x^2[/tex]

And for the second group:

[tex]GCF=2[/tex]

- Factor them out:

[tex]x^2(x^{}-5^{})+2(x-5)=0[/tex]

4. Notice that this expression is common in both terms:

[tex]x-5[/tex]

Then, you can factor it out:

[tex](x-5)(x^2+2)=0[/tex]

5. Now you can set up these two equations:

[tex]\begin{gathered} x-5=0\text{ (Equation 1)} \\ \\ x^2+2=0\text{ (Equation 2)} \end{gathered}[/tex]

6. Solve for "x" from each equation:

- For Equation 1:

[tex]x_1=5_{}[/tex]

- For Equation 2:

[tex]\begin{gathered} x^2=-2 \\ x_{}=\pm\sqrt[]{-2} \end{gathered}[/tex]

By definition:

[tex]\sqrt[]{-1}=i[/tex]

Then, you get:

[tex]x=\pm\sqrt[]{-2}\Rightarrow\begin{cases}x_2=i\sqrt[]{2} \\ \\ x_3=-i\sqrt[]{2}\end{cases}_{}[/tex]

Hence, the answer is:

[tex]\begin{gathered} x_1=5_{} \\ \\ x_2=i\sqrt[]{2} \\ \\ x_3=-i\sqrt[]{2} \end{gathered}[/tex]