et «be any integer. Round to me to three dec mal places we appropriate. If there is no solucion, erter solve the equalion by factor ng. Enter your answers as a comma - separates list. NO SOLUTION. )

et be any integer Round to me to three dec mal places we appropriate If there is no solucion erter solve the equalion by factor ng Enter your answers as a comma class=

Respuesta :

Problem

Solution

For this case we can do the following:

[tex]\frac{1}{\cos\theta}\cdot\frac{\sin\theta}{\cos\theta}-\cos \theta\cdot\frac{\cos\theta}{\sin\theta}=\sin \theta[/tex][tex]\frac{\sin\theta}{cos^2\theta}-\frac{\cos^2\theta}{\sin\theta}=\sin \theta[/tex][tex]\frac{\sin^2\theta-\cos^2\theta\cos^2\theta}{\sin\theta\cos^2\theta}=\sin \theta[/tex]

then we can croos multiply:

[tex]\sin ^2\theta-\cos ^2\theta\cos ^2\theta=\sin ^2\theta\cos ^2\theta[/tex]

then we can redistribute the terms and we got:

[tex]\sin ^2\theta=\cos ^2\theta\cos ^2\theta+\sin ^2\theta\cos ^2\theta[/tex]

taking common factor cos^2 we got:

[tex]\sin ^2\theta=\cos ^2\theta(\cos ^2\theta+\sin ^2\theta)[/tex]

Since:

[tex]\sin ^2\theta+\cos ^2\theta=1[/tex]

We have:

[tex]\sin ^2\theta=\cos ^2\theta[/tex]

And thae answer for this case is:

[tex]\theta=\frac{\pi}{4}+\pi\text{ n}[/tex]

Ver imagen IaraI44874