Given a function:
[tex]y=ax^2+bx+c[/tex]The vertex is the point V(h,k) given by:
[tex]\begin{gathered} h=\frac{-b}{2a} \\ k=y(h) \end{gathered}[/tex]Therefore:
[tex]\begin{gathered} y=-3x^2+6x+10 \\ a=-3 \\ b=6 \\ c=10 \end{gathered}[/tex][tex]h=\frac{-6}{2(-3)}=\frac{-6}{-6}=1[/tex][tex]k=y(h)=-3(1)^2+6(1)+10=-3+6+10=13[/tex]The company needs to produce 1000 per week in order to earn its maximum profit of $1300 dollars