Respuesta :

Given the numbers of sexagesimal and centesimal minutes of any angle, you need to prove that:

[tex]\frac{M_1}{27}=\frac{M_2}{50}[/tex]

By definition, a Right Angle measures 90 degrees.

By definition, for Sexagesimal:

[tex]1\text{\degree}=60\text{ }minutes[/tex][tex]1\text{ }minute=60\text{ }seconds[/tex]

Then, in the sexagesimal form, a Right Angle is:

[tex]90\cdot60\cdot60\text{ }seconds[/tex]

By definition, for Centesimal:

[tex]90\text{\degree}=100\text{ }g[/tex][tex]100\text{ }g=100\text{ }minutes[/tex][tex]1\text{ }minute=100\text{ }seconds[/tex]

Therefore, a Right Angle is:

[tex]100\cdot100\cdot100\text{ }seconds[/tex]

So you can set up this ratio:

[tex]\frac{M_1}{M_2}=\frac{90\cdot60}{100\cdot100}[/tex]

Simplifying, you get:

[tex]\frac{M_1}{M_2}=\frac{27}{50}[/tex]

Hence, the answer is:

[tex]\frac{M_1}{M_2}=\frac{90\cdot60}{100\cdot100}[/tex][tex]\frac{M_1}{M_2}=\frac{27}{50}[/tex]

Therefore:

[tex]\frac{M_1}{27}=\frac{M_2}{50}[/tex]