Respuesta :

Answer:

4y - x = 35

Explanations:

The given points are A(3, 7) and B(2, 11)

The general equation of a line with the points A(x₁ , y₁) and B(x₂ , y₂) is :

[tex]\begin{gathered} y-y_1=m(x-x_1) \\ \text{Where m is the slope } \\ m\text{ = }\frac{y_2-y_1}{x_2-x_1} \\ x_1=3,y_1=7,x_2=2,y_2=\text{ 11} \\ m\text{ = }\frac{11-7}{2-3} \\ m\text{ = -4} \end{gathered}[/tex]

Putting these values into the general line equation:

For the line parallel to the lines formed by the points slope = -1 / m

Slope = -1 / 4

[tex]\begin{gathered} y-y_1=\text{ }\frac{-1}{m}(x-x_1) \\ y\text{ - 7 = }\frac{-1}{-4}(x\text{ - 3)} \\ y\text{ - 7 = }\frac{1}{4}(x\text{ - 3)} \\ 4(y\text{ - 7) = x - 3} \\ 4y\text{ - 28 = x - 3} \\ 4y\text{ - x = 35} \end{gathered}[/tex]