Find the center, vertices, foci, and asymptotes of the hyperbola.(y=4)? (x+8).-= 149Center: ODVertices: (01) and (-DFoci: CD and CDAsymptotes: y = and y = 0

Find the center vertices foci and asymptotes of the hyperbolay4 x8 149Center ODVertices 01 and DFoci CD and CDAsymptotes y and y 0 class=

Respuesta :

we have the equation

[tex]\frac{(y-4)^2}{4}-\frac{(x+8)^2}{9}=1[/tex]

Part 1

Find out the center

The center is the ordered pair (-8,4)

Part 2

we have that

the transverse axis lies on the y-axis

a^2=4 ----------> a=2

b^2=9 --------> b=3

The coordinates of the vertices are

(-8,4+2) --------> (-8,6)

(-8,4-2) -------> (-8,2)

The vertices are (-8,6) and (-8,2)

Part 3

Find out the coordinates of Foci

Remember that

c^2=a^2+^2

c^2=4+9

c^2=13

c=√13

The coordinates of Foci are

(-8, 4+√13) and (-8,4-√13)

Part 4

Find out the equation of the asymptotes

The equation of te asymptotes is given bty

[tex]y-k=\pm\frac{a}{b}(x-h)[/tex]

where

h=-8

k=4

a=2

b=3

substitute

[tex]y-4=\operatorname{\pm}\frac{2}{3}(x+8)[/tex]

therefore

the equations are

[tex]\begin{gathered} y=\frac{2}{3}(x+8)+4=\frac{2}{3\text{ }}x+\frac{16}{3}+4=\frac{2}{3\text{ }}x+\frac{28}{3} \\ y=-\frac{2}{3}(x+8)+4=-\frac{2}{3}x-\frac{16}{3}+4=-\frac{2}{3}x-\frac{4}{3} \end{gathered}[/tex]

The asymptotes are

[tex]\begin{gathered} y=\frac{2}{3\text{ }}x+\frac{28}{3} \\ \\ y=-\frac{2}{3}x-\frac{4}{3} \end{gathered}[/tex]