Respuesta :

Let x and y represent both numbers.

Given:

x = 1/4 * y

x + y = 15

Let's find the two numbers.

We have the system of equations:

[tex]\begin{gathered} x=\frac{1}{4}y \\ \\ x+y=15 \end{gathered}[/tex]

Plug in 1/4y for x in the second equation:

[tex]\begin{gathered} \frac{1}{4}y+y=15 \\ \\ \\ \frac{5}{4}y=15 \\ \\ 1.25y=15 \end{gathered}[/tex]

Divide both sides by 1.25:

[tex]\begin{gathered} \frac{12.5y}{1.25}=\frac{15}{1.25} \\ \\ y=12 \end{gathered}[/tex]

Now, to solve for x plug in 12 for y in either the first or second equation.

Let's take the first equation:

[tex]\begin{gathered} x=\frac{1}{4}y \\ \\ x=\frac{1}{4}*12 \\ \\ x=3 \end{gathered}[/tex]

Therefore, the numbers are:

3, 12

ANSWER:

3, 12