ANSWER:
85.97 m/s
STEP-BY-STEP EXPLANATION:
Bernoulli’s theorem is written as:
[tex]P_1+\frac{1}{2}\cdot\rho\cdot v^2_1+\rho\cdot g\cdot h_1=P_2+\frac{1}{2}\cdot\rho\cdot v^2_2+\rho\cdot g\cdot h_2[/tex]The potential energy is zero as the height is same, therefore:
[tex]\begin{gathered} \rho\cdot g\cdot h=0 \\ P_1+\frac{1}{2}\cdot\rho\cdot v^2_1+0=P_2+\frac{1}{2}\cdot\rho\cdot v^2_2+0 \\ P_1+\frac{1}{2}\cdot\rho\cdot v^2_1=P_2+\frac{1}{2}\cdot\rho\cdot v^2_2 \\ \text{ we solve for }v_1\colon \\ \frac{1}{2}\cdot\rho\cdot v^2_1=P_2-P_1+\frac{1}{2}\cdot\rho\cdot v^2_2 \\ v^2_1=\frac{2}{\rho}\cdot(P_2-P_1)+\frac{2}{\rho}\cdot\frac{1}{2}\cdot\rho\cdot v^2_2 \\ v^2_1=\frac{\Delta P}{\rho}+v^2_2 \\ v_1=\sqrt[]{\frac{2\Delta P}{\rho}+v^2_2} \\ \text{ replacing the values:} \\ v_1=\sqrt[]{\frac{2\cdot587}{1.29}+80.5^2} \\ v_1=85.97\text{ m/s} \end{gathered}[/tex]The air speed above the wings is 85.97 m/s