Respuesta :

Given that

[tex]\sin \theta=\frac{\sqrt[]{11}}{6}[/tex]

Required: Value of csc θ

Solution:

Step 1:

From the reciprocal trigonometric identities,

[tex]\csc \theta=\frac{1}{\sin\theta}\text{ ----- equation 1}[/tex]

where

[tex]\sin \theta=\frac{\sqrt[]{11}}{6}[/tex]

Step 2:

Substitute the value of sin θ into equation 1.

Thus,

[tex]\begin{gathered} \csc \theta=\frac{1}{\sin\theta} \\ \csc \theta=\frac{1}{\frac{\sqrt[]{11}}{6}}=\frac{6}{\sqrt[]{11}} \end{gathered}[/tex]

Step 3:

Rationalize the surd obtained in step 2.

Thus, we have

[tex]\begin{gathered} \csc \theta=\frac{6}{\sqrt[]{11}} \\ \text{Multiply the numerator and denominator by }\sqrt[]{11.} \\ \text{thus,} \\ \Rightarrow\frac{6}{\sqrt[]{11}}\times\frac{\sqrt[]{11}}{\sqrt[]{11}} \\ =\frac{6\sqrt[]{11}}{11} \end{gathered}[/tex]

Hence, the value of csc θ is evaluated to be

[tex]\frac{6\sqrt[]{11}}{11}[/tex]