Find the quadratic equation whose roots are 5 and -5

Given the roots of the Quadratic Equation:
[tex]\begin{gathered} x=5 \\ x=-5 \end{gathered}[/tex]You can write the Quadratic Equation in Factored Form:
[tex](x-5)(x+5)=0[/tex]Now you need to multiply the binomials using the FOIL Method, which states that:
[tex]\mleft(a+b\mright)\mleft(c+d\mright)=ac+ad+bc+bd[/tex]Then:
[tex](x)(x)+(x)(5)-(5)(x)-(5)(5)=0[/tex][tex]x^2+5x-5x-25=0[/tex]Adding the like terms, you get:
[tex]x^2-25=0[/tex]Hence, the answer is: Second option.