Respuesta :

[tex](x^{22})(x^7)=x^p[/tex]

In the given expression the base value of the expression are same,

The genral form of base and exponent are given as :

[tex]\begin{gathered} b^a,_{} \\ \text{here b is the base } \\ a\text{ = exponent value} \end{gathered}[/tex]

From the properties of base value,

If the base is same then the exponents value will add up,

[tex]x^ax^{b^{}}=x^{a+b}[/tex]

Since, we have

[tex]\begin{gathered} (x^{22})(x^7)=x^p \\ \text{ so the exponents value will add up} \\ x^{22+7}=x^p \\ x^{29}=x^p \\ \text{bases are same, so compare the exponents value,} \\ 29=p \\ p=29 \end{gathered}[/tex]

So, the value of p is 29.

Answer : p = 29