gr. 12 calcDetermine an expression for the area of a rectangle inscribed in a circle of radius 1 cm, in terms of angle θ as shown in the diagram below and be sure to state any restrictions on θ

gr 12 calcDetermine an expression for the area of a rectangle inscribed in a circle of radius 1 cm in terms of angle θ as shown in the diagram below and be sure class=

Respuesta :

SOLUTION

From the diagram below

From the diagram, we have the hypotenuse of triagle ABD as 1 + 1 = 2cm

So using SOHCAHTOA, we have

[tex]\begin{gathered} sin\varnothing=\frac{oppsite}{hypotenuse} \\ sin\varnothing=\frac{x}{2} \\ x=2sin\varnothing \\ Also\text{ } \\ cos\varnothing=\frac{adjacent}{hypotenuse} \\ cos\varnothing=\frac{y}{2} \\ y=2cos\varnothing \end{gathered}[/tex]

hence the area of the inscribed rectangle becomes

[tex]\begin{gathered} Area=x\times y \\ Area=(2sin\varnothing)(2cos\varnothing) \\ =4sin\varnothing cos\varnothing \end{gathered}[/tex]

Hence the answer is

[tex]Area=4sin\varnothing cos\varnothing[/tex]

(b) To get the maximum area, we find the derivative of the function above, we have

[tex]\begin{gathered} A=4sin\varnothing cos\varnothing \\ simplify,\text{ we have } \\ 2sin(2\varnothing) \\ =\frac{d}{d\varnothing}(2sin(2\varnothing)) \\ take\text{ the constant out } \\ =2\frac{d}{d\varnothing}(sin(2\varnothing)) \end{gathered}[/tex]

Apply the chain rule

[tex]\begin{gathered} cos(2\varnothing)\frac{d}{d\varnothing}(2\varnothing) \\ =\frac{d}{d\varnothing}(2\varnothing)=2 \\ =2cos(2\varnothing)\times2 \\ =4cos(2\varnothing) \end{gathered}[/tex]

At maximum the derivative is 0, equating to zero, we have

[tex]\begin{gathered} 4cos(2\varnothing)=0 \\ \varnothing=45\degree \end{gathered}[/tex]

So, we put this 45 into the expression for area, we have

[tex]\begin{gathered} Area=4sin\varnothing cos\varnothing \\ =4sin45\degree cos45\degree \\ =4\times\frac{\sqrt{2}}{2}\times\frac{\sqrt{2}}{2} \\ =\frac{4\times2}{4} \\ =2units^2 \end{gathered}[/tex]

Hence the answer is 2 square units

Ver imagen KeelaP81831