Answer:
-3/4
Explanation:
Given the points: A(-2,5) and B(6,-1)
[tex]\begin{gathered} (x_1,y_1)=A(-2,5) \\ \mleft(x_2,y_2\mright)=B\mleft(6,-1\mright) \end{gathered}[/tex]Substitute these points into the slope formula below:
[tex]\begin{gathered} \text{Slope},m=\frac{Change\text{ in y-axis}}{Change\text{ in x-axis}} \\ =\frac{y_2-y_1}{x_2-x_1} \end{gathered}[/tex]This gives:
[tex]\begin{gathered} m=\frac{-1-5}{6-(-2)} \\ =-\frac{6}{6+2} \\ =-\frac{6}{8} \\ =-\frac{3}{4} \end{gathered}[/tex]The slope of line AB is -3/4.