Respuesta :

Area of a triangle

The area of a triangle is found using its base and height:

In this case, if we rotate the given triangle, we have:

Then, we have:

[tex]\begin{gathered} \text{area}=\frac{\text{base}\cdot\text{height}}{2} \\ \downarrow \\ \text{area}=\frac{\text{42}\cdot\text{height}}{2} \end{gathered}[/tex]

We have to find the height in order to find the area of this triangle.

Sum of inner angles

Since the sum of the inner angles of a triangle is 180º, then:

∠V + ∠X + ∠W = 180º

↓ since ∠X=55º and ∠W=67º

∠V + 55º + 67º = 180º

∠V + 122º = 180º

Solving for ∠V:

∠V + 122º = 180º

↓ taking 122º to the right side of the equation

∠V = 180º - 122º = 58º

Then,

∠V = 58º

Height

Analyzing the triangle, we can see that drawing the height a right triangle is formed:

We have that:

[tex]\sin (67º)=\frac{\text{opposite side}}{\text{hypotenuse}}[/tex]

In this right triangle we have that:

height = opposite side

XW = hypotenuse

[tex]\begin{gathered} \sin (67º)=\frac{\text{opposite side}}{\text{hypotenuse}} \\ \downarrow \\ \sin (67º)=\frac{\text{height}}{\text{XW}} \end{gathered}[/tex]

Then, we have an equation for the height:

[tex]\begin{gathered} \sin (67º)=\frac{\text{height}}{\text{XW}} \\ \downarrow\text{taking XW to the left} \\ XW\cdot\sin (67º)=\text{height} \end{gathered}[/tex]

height = XW · sin(67º)

Then, if we find the length of the side XW, we will find the height.

XW measure

We have that, using the Sines Theorem (it relates the angles and their opposite side):

[tex]\begin{gathered} \frac{\sin(58º)}{XW}=\frac{\sin(55º)}{VX}=\frac{\sin(67º)}{WV} \\ \downarrow \\ \frac{\sin(58º)}{XW}=\frac{\sin(55º)}{VX} \\ \downarrow\text{ since VX = 42} \\ \frac{\sin(58º)}{XW}=\frac{\sin(55º)}{42} \end{gathered}[/tex]

Then, we have an equation for XW:

[tex]\begin{gathered} \frac{\sin(58º)}{XW}=\frac{\sin(55º)}{42} \\ \end{gathered}[/tex]

Solving the equation for XW, we have:

[tex]\begin{gathered} \frac{\sin(58º)}{XW}=\frac{\sin(55º)}{42} \\ \downarrow \\ \sin (58º)=\frac{\sin(55º)}{42}XW \\ \downarrow \\ \frac{\sin(58º)}{\sin(55º)}\cdot42=XW \end{gathered}[/tex]

Solving the operation we have that:

[tex]\begin{gathered} XW=\frac{\sin(58º)}{\sin(55º)}\cdot42\cong43.4816 \\ \end{gathered}[/tex]

Then

XW ≅ 43.4816

Height PART 2

Now, we can find the height:

height = 43.4816 · sin(67º)

height = 43.57 · 0.92 ≅ 40.025

Now, we have the height:

height ≅ 40.025

We are going to use it to find the area:

Area PART 2

[tex]\begin{gathered} \text{area}=\frac{\text{42}\cdot\text{height}}{2} \\ \downarrow \\ \text{area}=\frac{\text{42}\cdot40.025}{2}=840.525 \end{gathered}[/tex]

Now, we have the area:

area = 840.525 m²

If we round the area to the nearest tenth (one digit after the decimal point):

840.525 ≅ 840.5

Then,

area = 840.5 m²

Final answer: area = 840.5

Ver imagen NanaL717490
Ver imagen NanaL717490
Ver imagen NanaL717490
Ver imagen NanaL717490
Ver imagen NanaL717490