Respuesta :
Let's begin by listing out the information given to us:
m > n
We will proceed to solve the inequalities given as shown below:
[tex]\begin{gathered} If\colon m>n \\ \\ m+2.1>n+2.1 \\ \text{Subtract ''2.1'' from both sides, we have:} \\ m>n \\ m+2.1>n+2.1\Rightarrow m>n \\ \therefore m+2.1>n+2.1(TRUE) \\ \\ m-(-4)>n-\mleft(-4\mright) \\ \Rightarrow m+4>n+4 \\ \text{Subtract ''4'' from both sides, we have:} \\ m>n \\ m+4>n+4\Rightarrow m>n \\ \therefore m+4>n+4(TRUE) \\ \\ m+3>n-3 \\ \text{Subtract '3'' from both sides, we have:} \\ m>n-3-3\Rightarrow m>n-6 \\ m>n-6\ne m>n \\ \therefore m+3>n-3(FALSE) \\ \\ \end{gathered}[/tex]The last three choices are below:
[tex]\begin{gathered} 16.5+m>16.5+n \\ \text{Subtract ''16.5'' from both sides, we have:} \\ m>n \\ 16.5+m>16.5+n\Rightarrow m>n \\ \therefore16.5+m>16.5+n(TRUE) \\ \\ m>n+2 \\ m>n+2\ne m>n \\ \therefore m>n+2(FALSE) \\ \\ \\ \end{gathered}[/tex]The inequalities marked as TRUE are the inequalities that apply