A straw is cylindrical in nature.
The amount of liquid that a structure can hold is the volume.
Thus, we find the volume of the cylinder.
Given:
All units must be the same, so we convert them to be in the same unit of length.
[tex]\begin{gathered} \text{length of straw = height of straw = h = 25cm} \\ \text{diameter of straw = }d\text{ = 8mm} \\ 1\operatorname{mm}=0.1\operatorname{cm} \\ 8\operatorname{mm}=0.1\times8=0.8\operatorname{cm} \\ d=0.8\operatorname{cm} \\ \text{radius is half of diameter} \\ r=\frac{d}{2} \\ r=\frac{0.8}{2} \\ r=0.4\operatorname{cm} \end{gathered}[/tex]The volume of a cylinder is given by;
[tex]V=\pi r^2h[/tex][tex]\begin{gathered} V=\pi\times0.4^2\times25 \\ V=4\pi cm^3 \end{gathered}[/tex]The volume in terms of pi is
[tex]4\pi cm^3[/tex]To convert the volume to mL,
[tex]1\operatorname{cm}^3=1mL[/tex]Therefore,
[tex]4\pi cm^3=4\pi mL[/tex]Therefore, the straw can contain 4 pi mL of liquid.
Volume =
[tex]4\pi\text{ mL}[/tex]