Respuesta :

To solve for the length of JL in the right triangle, we will apply

SOHCAHTOA

For this particular question, we will use CAH

[tex]\cos \theta=\frac{adjacent}{hypotenuse}[/tex][tex]\cos 57=\frac{JL}{12}[/tex][tex]\text{Cross multiply}[/tex][tex]\begin{gathered} 12\times\cos 57=JL \\ 12\times0.54464\text{ =JL} \\ 6.53568\text{ = JL} \\ 7\text{ (to the nearest whole number) = JL} \end{gathered}[/tex]