Part (1)
The height of mass at the top of its new path is 2/5 L, therefore, the potential energy of the mass can be expressed as,
[tex]U=\text{mg(}\frac{2}{5}L)[/tex]
The kinetic energy of the mass can be given as,
[tex]K=\frac{1}{2}mv^2[/tex]
According to conservation of energy,
[tex]U=K[/tex]
Plug in the known values,
[tex]\begin{gathered} mg(\frac{2}{5}L)=\frac{1}{2}mv^2 \\ v^2=\frac{4}{5}gL \\ v=\sqrt[]{\frac{4}{5}gL} \end{gathered}[/tex]
Substitute the known values,
[tex]\begin{gathered} v=\sqrt[]{\frac{4}{5}(9.8m/s^2)(2.11\text{ m)}} \\ \approx4.07\text{ m/s} \end{gathered}[/tex]
Thus, the speed of mass at the top of its new path is 4.07 m/s.
Part (2)
The tension in the string can be given as,
[tex]T=-Mg+F[/tex]
The centripetal force acting on the mass is,
[tex]F=\frac{Mv^2}{(\frac{2}{5}L)}[/tex]
Therefore, the tension in the string becomes,
[tex]\begin{gathered} T=-Mg+\frac{Mv^2}{(\frac{2}{5}L)} \\ =-Mg+\frac{5}{2}\frac{Mv^2}{L} \end{gathered}[/tex]
Substitute the known values,
[tex]\begin{gathered} T=-(7kg)(9.8m/s^2)(\frac{1\text{ N}}{1kgm/s^2})+\frac{5}{2}\frac{(7kg)(4.07m/s)^2}{(2.11\text{ m)}}(\frac{1\text{ N}}{1kgm/s^2}) \\ =-68.6\text{ N+}137.4\text{ N} \\ =68.8\text{ N} \end{gathered}[/tex]
Thus, the tension in the string is 68.8 N.