Answer:
[tex]y=\frac{2}{5}x+\frac{11}{5}[/tex]Explanation:
Given the slope and a point on the line, we use the point-slope form to find the equation of the line:
[tex]\begin{gathered} y-y_1=m(x-x_1) \\ m=\frac{2}{5} \\ (x_1,y_1)=(-3,1) \end{gathered}[/tex]Substitute the given values:
[tex]\begin{gathered} y-y_1=m(x-x_1) \\ y-1=\frac{2}{5}(x-(-3)) \\ y-1=\frac{2}{5}(x+3) \\ y=\frac{2}{5}(x+3)+1 \\ y=\frac{2}{5}x+\frac{6}{5}+1 \\ y=\frac{2}{5}x+\frac{11}{5} \end{gathered}[/tex]The equation of the line in slope-intercept form is:
[tex]y=\frac{2}{5}x+\frac{11}{5}[/tex]