Step 1: Find out the area of the circle
Step 2: Area of a circle using an approximation of π = 3.142
[tex]\begin{gathered} A\text{ = }\pi r^2 \\ \text{Area = 78.5ft} \\ \pi\text{ = 3.142} \\ 78.5ft\text{ = 3.142}\times r^2 \\ \text{divide both side by 3.142} \\ \frac{78.5}{3.142}\text{ = }\frac{3.142r^2}{3.142} \\ 24.98=r^2 \\ r^2\text{ = 25} \\ r\text{ = }\sqrt[\square]{25} \\ r\text{ = 5ft} \end{gathered}[/tex]
Step 3: Maximum diameter of the logo
[tex]\begin{gathered} \text{Diameter = 2 x radius} \\ \text{Diameter = 2 x 5ft} \\ \text{Diameter = 10ft} \end{gathered}[/tex]
Hence the maximum diameter of the logo = 10ft