41. If mBAC = 304°, find mCAB.a. 28°c. 25°b. 56°D.50°

Solution:
Given the figure below:
where
[tex]m\angle BAC=304\degree[/tex]To find m∠CAB,
Recall that angle at the center is twice the angle at the circumference.
Thus,
[tex]\begin{gathered} Let\text{ }\angle COB=x \\ thus, \\ \angle CAB=\frac{x}{2} \end{gathered}[/tex]Also,
[tex]\begin{gathered} \angle BAC+\angle COB=360 \\ 304+x=360 \\ subtract\text{ 304 from both sides,} \\ 304-304+x=360-304 \\ \Rightarrow x=56 \end{gathered}[/tex]Recall that
[tex]\begin{gathered} \angle CAB=\frac{x}{2} \\ =\frac{56}{2} \\ \Rightarrow\angle CAB=28\degree \end{gathered}[/tex]Hence, we have
[tex]m\angle CAB=28\degree[/tex]The correct option is A