Respuesta :

Solution:

Given the figure below:

where

[tex]m\angle BAC=304\degree[/tex]

To find m∠CAB,

Recall that angle at the center is twice the angle at the circumference.

Thus,

[tex]\begin{gathered} Let\text{ }\angle COB=x \\ thus, \\ \angle CAB=\frac{x}{2} \end{gathered}[/tex]

Also,

[tex]\begin{gathered} \angle BAC+\angle COB=360 \\ 304+x=360 \\ subtract\text{ 304 from both sides,} \\ 304-304+x=360-304 \\ \Rightarrow x=56 \end{gathered}[/tex]

Recall that

[tex]\begin{gathered} \angle CAB=\frac{x}{2} \\ =\frac{56}{2} \\ \Rightarrow\angle CAB=28\degree \end{gathered}[/tex]

Hence, we have

[tex]m\angle CAB=28\degree[/tex]

The correct option is A

Ver imagen OlinF523566