Respuesta :

To find the zeros in a function you have to find those values that make that:

[tex]f(x)=0[/tex]

In this case you have an cubic equation so first we are going to factorize it:

[tex]f(x)=x^3-x^2-5x+125^{}[/tex]

Knowing that 125 is equal to:

[tex]125=5^3[/tex]

this function can be expressed like:

[tex]f(x)=(x^3+5^3)-x^2-5x[/tex]

The sum of cubes is:

[tex]a^3+b^3=(a+b)(a^2-ab+b^2)[/tex]

We can use this to the first part of the equation:

[tex](x^3+5^3)=(x+5)(x^2-5x+25)[/tex]

Now we can factorize the other part as follow:

[tex]-x^2-5x=-x(x+5)[/tex]

So the equation now is:

[tex]f(x)=\text{ }(x+5)(x^2-5x+25)-x(x+5)[/tex]

Now we can factorize the (x+5) as a common term

[tex](x+5)(x^2-5x+25-x)[/tex]

And if we organice this one we get:

[tex]f(x)=(x+5)(x^2-6x+25)[/tex]using he first part ( x + 5) we can find one zero, as follow:[tex]x+5=0[/tex][tex]x=-5[/tex]

Finally we can use the quadratic equation in the second part we can find the other zeros, as follow:

[tex]x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex][tex]x=\frac{-(-6)\pm\sqrt[]{(-6)^2-4(1)(25)}}{2(1)}[/tex][tex]x=\frac{6\pm\sqrt[]{36-100}}{2}=\frac{6\pm\sqrt[]{-64}}{2}[/tex]

As we get a root for a negative munber we can use the imaginary number:

[tex]\sqrt[]{-64}=8i[/tex]

So:

[tex]x=\frac{6\pm8i}{2}[/tex]

The zeros are now calculated with the two solutions ( + and -)

[tex]x_1=\frac{6+8i}{2}=3+4i[/tex][tex]x_2=\frac{6-8i}{2}=3-4i[/tex]

Then so, the zeros of the function

[tex]f(x)=x^3-x^2-5x+125^{}[/tex]

are:

- 5

3 + 4i

3 - 4i

option B