Using the section formula if any point (x,y) divides the line joining the point
[tex]\begin{gathered} (x_1,y_1)_{} \\ \text{and} \\ (x_2,y_2) \end{gathered}[/tex]in the ratio m:n then.
[tex](x,y)=(\frac{mx_2+nx_1}{m+n},\frac{my_2+ny_1}{m+n})[/tex]Given:
[tex]\begin{gathered} (x_1,y_1)=(0,3) \\ (x_2,y_2)=(-2,5) \\ m=2 \\ n=5 \end{gathered}[/tex]Coordinate is (x,y) is:
[tex]\begin{gathered} x=\frac{mx_2+nx_1}{m+n} \\ x=\frac{(2\times-2)+(5\times0)}{5+2} \\ x=\frac{-4}{7} \end{gathered}[/tex][tex]\begin{gathered} y=\frac{my_2+ny_1}{m+n} \\ y=\frac{(2\times5)+(5\times3)}{5+2} \\ y=\frac{10+15}{7} \\ y=\frac{25}{7} \end{gathered}[/tex]So the coordinates of point is (-4/7 , 25/7)