Respuesta :

Let one of the missing angles be n°.

Since any two adjacent or consecutive angles of a parallelogram are supplementary, it follows that:

[tex]\begin{gathered} n+n=180 \\ \text{ Therefore,} \\ 2n=180 \\ \text{ Divide both sides of the equation by }2 \\ n=\frac{180}{2}=90 \end{gathered}[/tex]

Since opposite angles of a parallelogram are congruent, it follows that:

[tex]\begin{gathered} 3x=90\text{ and }6y=90 \\ \text{ Therefore,} \\ x=30\text{ and }y=15 \end{gathered}[/tex]

Therefore, the required values are:

x = 30 and y = 15

Ver imagen LionelX100551
Ver imagen LionelX100551