Respuesta :

SOLUTION

3To calculate the test statistics, we use the following steps:

Step 1: We write out the parameters

[tex]\begin{gathered} sample\text{ mean (}\bar{\text{x}}\text{)}=0.9 \\ \text{standard deviation(s)=}0.58 \\ \operatorname{mean}(\mu)=0.8 \\ n=32 \end{gathered}[/tex]

Step 2: Write out the formula for the test statistics (t)

[tex]t=\frac{\bar{x}-\mu}{\frac{s}{\sqrt[]{n}}}[/tex]

step 3: Find t

[tex]\begin{gathered} t=\frac{0.9-0.8}{\frac{0.58}{\sqrt[]{32}}} \\ t=\frac{0.1}{0.1025} \\ t=0.97532 \\ t\approx0.98 \end{gathered}[/tex]

Hence, the test statistic is approximately 0.98 to two decimal places.