Respuesta :
Answer:
[tex]\frac{9}{7},\frac{26}{21},\frac{17}{14},\frac{7}{6}[/tex]Explanation:
Given the improper fractions:
[tex]\frac{9}{7},\frac{7}{6},\frac{17}{14},\frac{26}{21}[/tex]In order to arrange the fractions, first, find the lowest common multiple of the denominators.
• LCM of 7, 6, 14, and 21 = 42
Next, rewrite each fraction as an equivalent fraction using the LCM as the new denominator.
[tex]\begin{gathered} \frac{9}{7}=\frac{9\times6}{7\times6}=\frac{54}{42} \\ \frac{7}{6}=\frac{7\times7}{6\times7}=\frac{49}{42} \\ \frac{17}{14}=\frac{17\times3}{14\times3}=\frac{51}{42} \\ \frac{26}{21}=\frac{26\times2}{21\times2}=\frac{52}{42} \end{gathered}[/tex]Since all the denominators are the same, order the numerators from the greatest to the least:
[tex]\begin{gathered} \frac{9}{7}=\frac{9\times6}{7\times6}=\frac{54}{42} \\ \frac{26}{21}=\frac{26\times2}{21\times2}=\frac{52}{42} \\ \frac{17}{14}=\frac{17\times3}{14\times3}=\frac{51}{42} \\ \frac{7}{6}=\frac{7\times7}{6\times7}=\frac{49}{42} \end{gathered}[/tex]Thus, the fractions ordered from greatest to least is:
[tex]\frac{9}{7},\frac{26}{21},\frac{17}{14},\frac{7}{6}[/tex]