Respuesta :

To get the surface area of the prism given, we have to find the total area of the nets

We first split the nets into three and then find the areas

Lets us start with B

[tex]\text{Area of B=Area of a rectangle = length }\times Breadth[/tex]

Area of A and C are equal

so each of the areas is

[tex]\frac{1}{2}\times base\text{ }\times height[/tex]

But we can use a general formula for an equilateral traingular prism

[tex]\begin{gathered} =\frac{\sqrt[]{3^{}}\text{ }\times a^2}{2}+3(a\times h) \\ \text{where a=7} \\ h=18 \end{gathered}[/tex][tex]\text{Surface Area =}\frac{\sqrt[]{3^{}}\text{ }\times7^2}{2}+3(7\times18)[/tex]

Thus we have the total surface area to be approximately

[tex]\text{Surface area=}420.44ft^2[/tex]

Ver imagen IzaakF435713
Ver imagen IzaakF435713