Respuesta :
84%
Explanation
the concentration is given by
[tex]\text{concentration = }\frac{volume\text{ of sucrose}}{\text{total volume}}\cdot100\text{ \%}[/tex]hence
Step 1
for the initial solution
[tex]45\text{ \%=}\frac{volumesucre}{\text{total volume}}\cdot100\rightarrow equation(1)[/tex]Step 2
after the evaporation
[tex]\begin{gathered} x\text{ \%=}\frac{volumesucrose}{(initial\text{ volume-evaporatio)}} \\ x\text{ \%=}\frac{volumesucrose}{(initial\text{ volume-260)}=300} \\ x\text{ \%=}\frac{volumesucrose}{300}\rightarrow equation(2) \end{gathered}[/tex][tex]\begin{gathered} (initial\text{ volume-260)}=300 \\ add\text{ 260 in both sides} \\ (initial\text{ volume-260)+260}=300+260 \\ initial\text{ volume=560} \end{gathered}[/tex]now, replace this value in step 1 to find the initial volume of sucrose
[tex]\begin{gathered} 45\text{ \%=}\frac{volumesucre}{\text{5}60} \\ 0.45\cdot560mL=\text{volume sucrose} \\ 252\text{ mL = Volume of sucrose} \end{gathered}[/tex]now, replace this value in eq(2)
[tex]\begin{gathered} x\text{ \%=}\frac{volumesucrose}{300}\rightarrow equation(2) \\ x\text{ \%=}\frac{252}{300}\cdot100 \\ x\text{ \%=84 \%} \end{gathered}[/tex]therefore, the answer is
84%
I hope this helps you