Respuesta :

Given the cone as shown below

The volume of a cone is evaluated as

[tex]\begin{gathered} \text{Volume = }\frac{1}{3}^{}\times\pi\text{ }\times r^2\times h \\ \text{where} \\ r\text{ is the radius of the circular base of the cone} \\ h\text{ is the height of the cone} \end{gathered}[/tex]

From the above figure,

radius of the circular base = YZ

height of the cone = XY

To evaluate the radius and height of the cone:

XYZ is a right-angled triangle.

Thus, using trigonometric ratios, we can evaluate XY and YZ.

height of the cone:

[tex]\begin{gathered} \sin \text{ 54 =}\frac{XY}{XZ} \\ \Rightarrow\sin \text{ 54 = }\frac{h}{15} \\ h=15\times\sin \text{ 54 = 15 }\times0.8090 \\ \Rightarrow h=12.14\text{ cm} \end{gathered}[/tex]

radius of the cone:

[tex]undefined[/tex]

Ver imagen DutchB777120
Ver imagen DutchB777120