Given:
Volume of canister, V1 = 1500 ml
Temperature, T1 = 22°C
Final temperature, T2 = 0°C
Let's find the volume the gas will occupy if the pressure remains constant.
To find the volume, V2, if the pressure remains constant, apply Charles' law:
[tex]\frac{V_1}{T_1}=\frac{V_2}{T_2}[/tex]Where:
V1 = 1500 ml
T1 = 22°C
T2 = 0°C
Let's solve for V2.
First convert the temperature from degrees celsius to Kelvin.
Where:
0°C = 273K
T1 = 22°C + 273 = 295K
Hence, we have:
T1 = 295K
T2 = 273K
Thus, solving for V2, 23 have:
[tex]\begin{gathered} \frac{V_1}{T_1}=\frac{V_2}{T_2} \\ \\ \frac{1500}{295}=\frac{V_2}{273} \end{gathered}[/tex]Cross multiply:
[tex]V_2\ast295=1500\ast273[/tex]Divide both sides by 295:
[tex]\begin{gathered} \frac{V_2\ast295}{295}=\frac{1500\ast273}{295} \\ \\ V_2=\frac{1500\ast273}{295} \\ \\ V_2=\frac{409500}{295} \\ \\ V_2=1388.14ml \end{gathered}[/tex]Therefore, the volume the gas will occupy if the pressure remains constant is 1388.14 ml.
ANSWER:
1388.14 mL