Respuesta :

Given:

Volume of canister, V1 = 1500 ml

Temperature, T1 = 22°C

Final temperature, T2 = 0°C

Let's find the volume the gas will occupy if the pressure remains constant.

To find the volume, V2, if the pressure remains constant, apply Charles' law:

[tex]\frac{V_1}{T_1}=\frac{V_2}{T_2}[/tex]

Where:

V1 = 1500 ml

T1 = 22°C

T2 = 0°C

Let's solve for V2.

First convert the temperature from degrees celsius to Kelvin.

Where:

0°C = 273K

T1 = 22°C + 273 = 295K

Hence, we have:

T1 = 295K

T2 = 273K

Thus, solving for V2, 23 have:

[tex]\begin{gathered} \frac{V_1}{T_1}=\frac{V_2}{T_2} \\ \\ \frac{1500}{295}=\frac{V_2}{273} \end{gathered}[/tex]

Cross multiply:

[tex]V_2\ast295=1500\ast273[/tex]

Divide both sides by 295:

[tex]\begin{gathered} \frac{V_2\ast295}{295}=\frac{1500\ast273}{295} \\ \\ V_2=\frac{1500\ast273}{295} \\ \\ V_2=\frac{409500}{295} \\ \\ V_2=1388.14ml \end{gathered}[/tex]

Therefore, the volume the gas will occupy if the pressure remains constant is 1388.14 ml.

ANSWER:

1388.14 mL