In the figure shown , the lengths of segments AC , BC ,CD , are given in terms of the variable x . If AB Parallel to the DE , solve for x and determine if the dimensions are reasonable ?

Answer:
• x=-6
,• Not Reasonable, Length cannot be negative
Explanation:
In the given figure, the two triangles (ABC and DCE) are similar.
The ratio of corresponding sides is:
[tex]\begin{gathered} \frac{AC}{CD}=\frac{BC}{CE} \\ \implies\frac{x}{x+2}=\frac{x+3}{x+4} \end{gathered}[/tex]We solve for x:
[tex]\begin{gathered} \begin{equation*} \frac{x}{x+2}=\frac{x+3}{x+4} \end{equation*} \\ \text{ Cross multiply} \\ x(x+4)=(x+2)(x+3) \\ \text{ Expand the brackets} \\ x^2+4x=x^2+3x+2x+6 \\ x^2+4x=x^2+5x+6 \\ x^2+5x+6-x^2-4x=0 \\ x+6=0 \\ x=-6 \end{gathered}[/tex]The value of x is -6.
Since x is a negative number, the dimensions are not reasonable as length cannot be negative.