Respuesta :

Given:

[tex]y=\frac{x^2-a^2}{x-a}[/tex]

To find:

The derivative.

Explanation:

a) Using the quotient rule,

[tex]\begin{gathered} y^{\prime}=\frac{(x-a)\frac{d}{dx}(x^2-a^2)-(x^2-a^2)\frac{d}{dx}(x-a)}{(x-a)^2} \\ =\frac{(x-a)(2x)-(x^2-a^2)}{(x-a)^2} \\ =\frac{(x-a)(2x)-(x-a)(x+a)}{(x-a)^2}\text{ \lbrack Since, }x^2-a^2=(x+a)(x-a)] \\ =\frac{(x-a)[2x-(x+a)]}{(x-a)^2} \\ =\frac{(x-a)(x-a)}{(x-a)^2} \\ y^{\prime}=1 \end{gathered}[/tex]

b)

By expanding the product and simplifying the quotient, we get

[tex]\begin{gathered} y=\frac{x^2-a^2}{x-a} \\ =\frac{(x+a)(x-a)}{(x-a)} \\ y=x+a \end{gathered}[/tex]

Differentiating with respect to x we get,

[tex]y^{\prime}=1[/tex]

The part (a) answer and the part (b) answer are the same.

Hence verified.

Final answer:

The derivative for the given problem is 1.