Given the points (1,2) and (2,6), we can find the relation function with the slope-point formula for the equation of a line:
[tex]\begin{gathered} \text{slope:} \\ m=\frac{y_2-y_1}{x_2-x_1} \\ \Rightarrow m=\frac{6-2}{2-1}=\frac{4}{1}=4 \\ m=4 \\ y-y_1=m(x-x_1) \\ \Rightarrow y-2=4(x-1)=4x-4 \\ \Rightarrow y=4x-4+2=4x-2 \\ y=4x-2 \end{gathered}[/tex]we have that the linear function is y=4x-2. Then for x=4 we have the following:
[tex]\begin{gathered} x=4 \\ \Rightarrow y=4\cdot4-2=16-2=14 \\ y=14 \end{gathered}[/tex]therefore, the missing value is y=14