PQRS is a parallelogram, HSR is a straight line and HPQ = 90°. If |HQ| = 10 cm and |PQ| = 6 cm, what is thearea of the parallelogram?

Answer:
48 cm²
Explanation:
First, we find the length of HP in the right triangle HPQ using the Pythagorean Theorem.
[tex]\begin{gathered} HQ^2=HP^2+PQ^2 \\ 10^2=HP^2+6^2 \\ HP^2=10^2-6^2=100-36=64 \\ HP^2=8^2 \\ \implies HP=8\text{ cm} \end{gathered}[/tex]Therefore:
• The height of the parallelogram, HP = 8cm
,• The base of the parallelogram, PQ = 6m
The area of a parallelogram is calculated using the formula:
[tex]Area=Base\times Height[/tex]Substitute the values given above:
[tex]Area=6\times8=48\;cm^2[/tex]The area of the parallelogram is 48 cm².